Detecting a local perturbation in a continuous scenery
نویسندگان
چکیده
A continuous one-dimensional scenery is a double-infinite sequence of points (thought of as locations of bells) in R. Assume that a scenery X is observed along the path of a Brownian motion in the following way: when the Brownian motion encounters a bell different from the last one visited, we hear a ring. The trajectory of the Brownian motion is unknown, whilst the scenery X is known except in some finite interval. We prove that given only the sequence of times of rings, we can a.s. reconstruct the scenery X entirely. For this we take the scenery X to be a local perturbation of a Poisson scenery X ′. We present an explicit reconstruction algorithm. This problem is the continuous analog of the “detection of a defect in a discrete scenery” as studied by Kesten [13] and Howard [9, 10]. Many of the essential techniques used with discrete sceneries do not work with continuous sceneries.
منابع مشابه
Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کاملStudy on Extracting Edge of Cropland Scenery
Vision navigation and location is a main function in the vision system of intelligent agricultural mobile robot, and the edge feature of images is an important feature for vision navigation and location. According to the characteristic of cropland scenery, a compactly supported dyadic antisymmetric wavelet with respect to origin is brought forward to detect edges of cropland image. A set of fil...
متن کاملGeneralized Continuous Frames for Operators
In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ wi...
متن کاملOn the Local Time of Random Processes in Random Scenery
Random walks in random scenery are processes defined by Zn := ∑n k=1 ξX1+...+Xk , where basically (Xk, k ≥ 1) and (ξy, y ∈ Z) are two independent sequences of i.i.d. random variables. We assume here that X1 is Z-valued, centered and with finite moments of all orders. We also assume that ξ0 is Z-valued, centered and square integrable. In this case H. Kesten and F. Spitzer proved that (nZ[nt], t ...
متن کاملDetecting the Trail of a Random Walker in a Random Scenery
Suppose that the vertices of the lattice Z are endowed with a random scenery, obtained by tossing a fair coin at each vertex. A random walker, starting from the origin, replaces the coins along its path by i.i.d. biased coins. For which walks and dimensions can the resulting scenery be distinguished from the original scenery? We find the answer for simple random walk, where it does not depend o...
متن کامل